Enhancing the Efficiency of Organic LEDs Through Spin-Orbit Coupling of Charge-Transfer States
نویسندگان
چکیده
In this thesis, the possibility of enhancing the efficiency of small molecule organic light-emitting diodes through spin-orbit effects is examined. Because only singlet spin states, statistically one quarter of the total possible states, emit fluorescent light, it has generally been thought that a maximum of 25% efficiency could be attained without the addition of an emissive phosphor. Here, we present evidence that this is not a fundamental limit. Two OLED structures have been studied, each providing evidence that the efficiency of the OLED can be enhanced by the use of a heavy-metal material to mix spin in charge-transfer states. A structure with a heavy-metal mixing layer placed beside a neat emissive layer was found to show a (2.5 ± 0.3) times enhancement in the efficiency compared with an OLED without the heavy-metal layer. However, differences in the electroluminescent emission spectra made attributing this result to spin statistics alone difficult. In a structure with the the heavy-metal mixing layer placed next to a fluorescent dye doped into a host, a (2.7 ± 0.2) times enhancement in the efficiency is measured. Thesis Supervisor: Marc A. Baldo Title: Assistant Professor
منابع مشابه
Spin-dependent exciton formation in pi-conjugated compounds.
The efficiency of light-emitting diodes (LEDs) made from organic semiconductors is determined by the fraction of injected electrons and holes that recombine to form emissive spin-singlet states rather than non-emissive spin-triplet states. If the process by which these states form is spin-independent, the maximum efficiency of organic LEDs will be limited to 25 per cent. But recent reports have...
متن کاملCharge-ordering cascade with spin-orbit Mott dimer states in metallic iridium ditelluride.
Spin-orbit coupling results in technologically-crucial phenomena underlying magnetic devices like magnetic memories and energy-efficient motors. In heavy element materials, the strength of spin-orbit coupling becomes large to affect the overall electronic nature and induces novel states such as topological insulators and spin-orbit-integrated Mott states. Here we report an unprecedented charge-...
متن کاملRevealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
Knowing the underlying photophysics of thermally activated delayed fluorescence (TADF) allows proper design of high efficiency organic light-emitting diodes. We have proposed a model to describe reverse intersystem crossing (rISC) in donor-acceptor charge transfer molecules, where spin-orbit coupling between singlet and triplet states is mediated by one of the local triplet states of the donor ...
متن کاملاثر برهمکنش اسپین مدار یکنواخت و میدان مغناطیسی یکنواخت بر خواص توپولوژیکی یک نانو سیم یک بعدی کوانتومی
We theoretically demonstrate the interplay of uniform spin-orbit coupling and uniform Zeeman magnetic field on the topological properties of one-dimensional double well nano wire which is known as Su-Schrieffer-Heeger (SSH) model. The system in the absence of Zeeman magnetic field and presence of uniform spin-orbit coupling exhibits topologically trivial/non–trivial insulator depending on the h...
متن کاملUltrafast Luminescence Decay in Rhenium(I) Complexes with Imidazo[4,5-f]-1,10-Phenanthroline Ligands: TDDFT Method
The interpretation of the ultrafast luminescence decay in [Re(Br(CO)3(N^N)] complexes as a new group of chromophoric imidazo[4,5-f]-1,10-phenanthroline ligands, including 1,2-dimethoxy benzene, tert-butyl benzene (L4) and 1,2,3-trimethoxy benzene, tert-butyl benzene (L6), was studied. Fac-[Re(Br(CO)3L4 and L6] with different aryl groups were calculated in singlet and triplet excited states. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006